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A tone-scramble is a random sequence of pure tones. Previous studies have found that most listen-

ers (� 70%) perform near chance in classifying rapid tone-scrambles composed of multiple copies

of notes in G-major vs G-minor triads; the remaining listeners perform nearly perfectly [Chubb,

Dickson, Dean, Fagan, Mann, Wright, Guan, Silva, Gregersen, and Kowalski (2013). J. Acoust.

Soc. Am. 134(4), 3067–3078; Dean and Chubb (2017). J. Acoust. Soc. Am. 142(3), 1432–1440].

This study tested whether low-performing listeners might improve with slower stimuli. In separate

tasks, stimuli were tone-scrambles presented at 115, 231, 462, and 923 notes per min. In each task,

the listener classified (with feedback) stimuli as major vs minor. Listeners who performed poorly in

any of these tasks performed poorly in all of them. Strikingly, performance was worst in the task

with the slowest stimuli. In all tasks, most listeners were biased to respond “major” (“minor”) if

the stimulus ended on a note high (low) in pitch. Dean and Chubb introduced the name

“scale-sensitivity” for the cognitive resource that separates high- from low-performing listeners in

tone-scramble classification tasks, suggesting that this resource confers sensitivity to the full gamut

of qualities that music can attain by being in a scale. In ruling out the possibility that performance

in these tasks depends on speed of presentation, the current results bolster this interpretation.
VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5055990
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I. INTRODUCTION

Music in the major diatonic scale sounds “happy” to

many listeners whereas music in the minor scale sounds “sad”

(Blechner, 1977; Crowder, 1984, 1985a,b; Gagnon and Peretz,

2003; Gerardi and Gerken, 1995; Heinlein, 1928; Hevner,

1935; Kastner and Crowder, 1990; Temperley and Tan, 2013).

Because of this striking qualitative difference, the major and

minor scales have come to play a central role in western

music. Surprisingly, however, many listeners seem to have dif-

ficulty discriminating major vs minor melodies (Halpern,

1984; Halpern et al., 1998; Leaver and Halpern, 2004).

Chubb et al. (2013) investigated sensitivity to major vs

minor musical modes using a new class of stimuli, called

tone-scrambles, specifically designed to isolate perceptual

differences due to variations in musical scale from other

aspects of music structure. These stimuli comprised 32 tones

from the Western diatonic scales, each 65 ms in duration pre-

sented in a random sequence. The major and minor tone-

scrambles used in the first experiment reported by Chubb

et al. (2013) all contained eight each of the notes G5, D6, and

G6 (which established G as the tonic center of each stimu-

lus); in addition, major tone-scrambles contained eight B5’s

(the third degree of the G major scale) whereas minor tone-

scrambles contained eight B[5’s (the third degree of the G
minor scale). (The stimuli used in the “8-task” in the current

study are identical to these.) On each trial, the listener heard

either a major or a minor tone-scramble and strove (with

trial-by-trial feedback) to classify it as major vs minor. The

results revealed a bimodal distribution of performance:

approximately 70% of listeners performed near chance,

whereas the other 30% performed nearly perfectly.

These results make it clear that high-performers possess

auditory processing capabilities that low-performers do not.

Dean and Chubb (2017) explored the nature of these proc-

essing capabilities. Specifically, they tested listeners in five

tasks similar to the major-vs-minor tone-scramble task used

by Chubb et al. (2013). In each task, the stimuli were tone-

scrambles that contained 32, randomly sequenced, 65 ms

tones; like the tone-scrambles used by Chubb et al. (2013),

all of the stimuli of Dean and Chubb (2017) contained eight

each of the notes G5, D6, and G6 (to establish G as the tonic

center of every stimulus in all conditions). In addition, each

stimulus contained eight identical target notes. In the “2”

task, the target notes were either A[5’s or A5’s (diminished

second or second scale degree); in the “3” task, the target

tones were either B[5’s or B5’s [minor or major third scale

degree, replicating Chubb et al. (2013)]; in the “4” task, the

target tones were either C6’s or D[6’s (fourth scale degree or

tritone); in the “6” task, the target tones were either E[6’s or

E6’s (minor or major sixth scale degree); and in the “7” task,

the target tones were either F6’s or G[6’s (minor or major

seventh scale degree).

The results were well-described by a “bilinear” model

proposing that performance in all five tasks is determined

predominantly by a single computational resource R.

Specifically, for any listener k and any task t, let Rk be the

amount of R possessed by listener k, and let Ft be the

strength with which R facilitates task t. Then the bilinear

model asserts that the sensitivity (as reflected by d0) ofa)Electronic mail: smednico@uci.edu
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listener k to the difference between the two types of stimuli

in task t is

d0k;t ¼ RkFt: (1)

This model accounted for 79% of the variance in d0k;t across

139 listeners and the five tasks. Consonant with the results of

Chubb et al. (2013), most listeners (around 70%) had levels

of R near zero, yielding near-chance performance in all five

tasks; the other roughly 30% of listeners had levels of R that

enabled substantially better performance. However, some

tasks were facilitated more strongly than others by R; in par-

ticular, the highest levels of performance were achieved in

the 2, 3, and 6 tasks; the 4 task was harder, and the 7 task

was harder still. Thus F2 � F3 � F6>F4>F7.

What do these findings suggest about the nature of the

resource R? The 3, 6, and possibly the 7 tasks require differ-

ential sensitivity to the major vs the minor scale. In each of

these tasks, one target note belongs to the major but not the

minor diatonic scale, and the other target note belongs to the

minor but not the major scale. However, this is not true of

the 2 and 4 tasks. In each of these tasks, one target note

belongs to both the major and minor scales, and the other tar-

get note belongs to neither scale. Dean and Chubb (2017)

concluded that the resource R implicated by the study of

Chubb et al. (2013) is not specific to the difference between

the major vs minor scales; rather, they proposed that R con-

fers sensitivity more generally to the spectrum of qualities

that music can achieve by creating a scale through establish-

ing a tonic and selecting a subset of notes relative to that

tonic. Accordingly, Dean and Chubb (2017) called R “scale-

sensitivity.”

A. Musical training and scale-sensitivity

On average, trained musicians have higher scale-

sensitivity than non-musicians. In particular, both Chubb

et al. (2013) and Dean and Chubb (2017) observed fairly

strong correlations between years of musical training and

performance in the tone-scramble task. However, a plausible

hypothesis is that these correlations are driven primarily by a

self-selection bias: listeners with high levels of scale-

sensitivity tend to seek out musical training whereas listeners

with low levels of scale-sensitivity do not. This interpreta-

tion is supported by the following observations. In each of

Chubb et al. (2013) and Dean and Chubb (2017), the positive

correlation between years of musical training and scale-

sensitivity was driven primarily by a large group of listeners

with no musical training who had very little scale-sensitivity

as well as a smaller group with many years of musical train-

ing who had high scale-sensitivity. Strikingly, however,

Chubb et al. (2013) and Dean and Chubb (2017) also

observed moderate numbers of listeners with many years of

musical training with little or no scale-sensitivity as well as

other listeners with little or no musical training who had

high scale-sensitivity, suggesting that musical training is nei-

ther necessary nor sufficient to attain high levels of scale-

sensitivity. It should be noted, however, that in the study of

Dean and Chubb (2017), the highest levels of scale-

sensitivity were achieved only by listeners with at least four

years of musical training. Thus, although musical experience

is not sufficient for scale-sensitivity, it may be necessary to

attain the highest levels of scale-sensitivity.

B. The current study

Is “scale-sensitivity” really an appropriate name for R?

In the studies of both Chubb et al. (2013) and Dean and

Chubb (2017), all of the tone-scrambles comprised rapid,

random sequences of 65 ms tones; i.e., tones were presented

at the rate of 15.38/s. As shown by Viemeister (1979), listen-

ers are maximally sensitive to temporal amplitude modula-

tions (of a white noise carrier) from 2 Hz up to 16 Hz with

gradually decreasing sensitivity to temporal frequencies

above 16 Hz. These results suggest that listeners should be

very sensitive to the temporal modulations of amplitude in

the tone-scrambles used by Chubb et al. (2013) and Dean

and Chubb (2017).

However, other research has documented strong individ-

ual differences in the performance of various temporal-

sequence-discrimination tasks (Johnson et al., 1987; Kidd

et al., 2007). This raises the possibility that high-performers

in tone-scramble tasks differ from low-performers solely in

being able to extract scale-generated qualities from these

rapid, musically degenerate stimuli. If so, then if the stimuli

are presented more slowly, the gap in sensitivity separating

high and low performers should disappear. The main pur-

pose of the current study was to investigate this possibility.

II. METHODS

All methods were approved by the UCI Institutional

Review Board.

A. Participants

Seventy-three listeners participated in this study. All

were undergraduates from the University of California,

Irvine, with self-reported normal hearing. Forty-five listeners

reported having at least one year of musical training. Across

all 73 listeners, the mean number of years of training was

3.1 (standard deviation: 3.94). Participants were compen-

sated with course credit.

B. Stimuli

The stimuli in this experiment were tone-scrambles.

These stimuli were originally introduced by Chubb et al.
(2013) to isolate effects due to variation in scale from other

sorts of musical structure, e.g., timbre, loudness, interval

sequence, etc. All tones were pure tones windowed by a raised

cosine function with a 22.5 ms rise time. Five different notes

were used, all from the standard equal-tempered chromatic

scale: G5 (783.99 Hz), B[5 (932.33 Hz), B5 (987.77 Hz), D6

(1174.66 Hz), and G6 (1567.98 Hz).

The current study used tone-scrambles of eight different

types listed in Table I. For n¼ 1, 2, 4, 8, the n-each stimuli

included n each of the notes G5, D6, and G6 as well as n cop-

ies of a target note T which was B5 in n-each major stimuli

vs B[5 in n-each minor stimuli. Each tone in an n-each
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stimulus lasted 520=n ms. For example, a four-each-major

tone-scramble consisted of a random sequence of 16 tones,

each 130 ms in duration; four of these tones were G5’s, four

were B5’s, four were D6’s, and four were G6’s. Note that

each of the eight different types of tone-scramble had a total

duration of 2.08 s.

C. Design

Each listener was tested in four different, separately

blocked tasks: the 1-task, the 2-task, the 4-task, and the 8-

task. On each trial in the n-task (for n¼ 1, 2, 4, 8), the lis-

tener heard either an n-each-major or an n-each-minor tone-

scramble and strove to judge which type she had heard. In

the visual prompt provided for the listener to enter each

response, the two types of stimuli were identified as

“HAPPY (major)” and “SAD (minor)”; the listener entered a

“1” on the keyboard for “major,” or “2” for “minor.”

Correctness feedback was given after each trial, and propor-

tion correct was presented visually at the end of each block.

In each task, the listener performed two blocks of 50 trials,

the second block following after the first with a brief break

in between. Each block contained 25 “major” stimuli and 25

“minor” stimuli. Task order was counterbalanced across lis-

teners a using Latin square design. For the basic analysis

reported in Sec. III, we followed the procedure of the previ-

ous tone-scramble studies and treated the first block of trials

as practice and used d0 for the second block of 50 trials as

our basic dependent measure (Chubb et al., 2013; Dean and

Chubb, 2017). (We note, however, that the pattern of results

would be very similar if we computed d0 using all 100 trials.)

In the task-specific analyses reported in Sec. V, to increase

statistical power, we used all 100 trials from each listener.

At the start of the experiment, each listener filled out a

brief questionnaire. The only information from this question-

naire that is used in the analysis below is the number of years

of musical training reported by the listener. Testing was

done in a quiet lab on a Windows Dell computer with a stan-

dard Realtek audio/sound card using MATLAB. Stimuli were

presented at the rate of 50 000 samples/s. During testing, the

listener wore JBL Elite 300 noise-cancelling headphones

with volume adjusted to his or her comfort level. Prior to the

first block of trials in the n-task (for n¼ 1, 2, 4, 8), the

listener was presented with eight, visually identified, exam-

ple stimuli alternating between n-each-major and n-each-

minor tone-scrambles.

D. Can we account for performance in the 1-, 2-, 4- and
8-tasks in terms of a single cognitive resource?

It is possible that the slower major and minor

tone-scrambles used in the 1-, 2-, and/or 4-tasks may be discrim-

inable by neural systems other than the system used by high-

performing listeners in the 8-task. If so, then multiple cognitive

resources may be required to account for variations in perfor-

mance across all four tasks. In this case, the bilinear model is

likely to provide a poor description of the data.

Conversely, if performance is well-described by the

bilinear model, then plausibly the same cognitive resource

that underlies performance in the 8-task also controls perfor-

mance in the 1-, 2-, and 4-tasks. Note that in this case, if the

results for the 8-task replicate the findings of Chubb et al.
(2013) and Dean and Chubb (2017), then the majority of lis-

teners k will perform poorly in the 8-task, implying that they

have levels of Rk near 0, implying in turn that they will also

perform poorly in the 1-, 2-, and 4-tasks.

In the current context, the bilinear model proposes that

the values d0k;t of d0 achieved by our 73 listeners k in all four

of our tasks t are captured by Eq. (1), where [as in Dean and

Chubb (2017)] Rk is the amount of R possessed by listener k
and Ft is the strength with which task t is facilitated by R.

It should be noted that the model of Eq. (1) is undercon-

strained. We get exactly the same predictions from a model

in which (1) Rk is rescaled by an arbitrary factor A and (2) Ft

is rescaled by A�1. To avoid this problem, we impose the

constraint thatX
tasks t

Ft ¼ 4 ðwhere 4 is the number of tasksÞ: (2)

Equation (2) makes it easy to interpret the results. If all four

tasks are equally facilitated by R, then Ft will be 1 for all

tasks. Deviations from 1 directly indicate deviations of rela-

tive facilitation strength. In addition, imposing this con-

straint also makes Rk a prediction of the average value of d0k;t
achieved by listener k across the four tasks. [It should be

noted, however, that Dean and Chubb (2017) imposed a dif-

ferent constraint; specifically, they forced the sum of squared

Ft values to be 1.]

III. RESULTS

In computing d0 values for the analyses reported in this

section, we used only the last 50 trials in each task (treating

the first 50 as practice). If a listener responded correctly on

all 25 “major” (or “minor”) stimuli, the probability of a cor-

rect “major” (“minor”) response was adjusted to 24:5=25

¼ 0:98 [as suggested by Macmillan and Kaplan (1985)].

This leads to d0 values of 4.1075 for listeners who perform

perfectly across all 50 trials.

For each pair of tasks, Fig. 1 plots the d0 values achieved

(by all listeners) in one task against those achieved in the

other. Note first that in each scatterplot, there is (1) a large

TABLE I. The eight different types of tone-scramble used in the current

experiment. For n¼ 1, 2, 4, 8, in the “n-task” on each trial the listener heard

either a n-each-major or a n-each-minor tone-scramble and strove to judge

which type she had heard. Feedback was given after each trial.

Task

Stimulus

type

Tone

duration # G5’s # B5[’s # B5’s # D6’s # G6’s

1-task 1-each-major 520 ms 1 0 1 1 1

1-each-minor 520 ms 1 1 0 1 1

2-task 2-each-major 260 ms 2 0 2 2 2

2-each-minor 260 ms 2 2 0 2 2

4-task 4-each-major 130 ms 4 0 4 4 4

4-each-minor 130 ms 4 4 0 4 4

8-task 8-each-major 65 ms 8 0 8 8 8

8-each-minor 65 ms 8 8 0 8 8
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group of listeners for whom d0 is near 0 in both tasks and (2)

a smaller group of listeners who achieve levels of d0 near

4.1075 (the value corresponding to perfect performance) in

both tasks. In addition, there are other listeners intermediate

between these two extreme groups. The relative difficulty of

the two tasks being compared in a given scatterplot is evi-

dent in the distribution of d0 values for this intermediate

group.

Inspection of the scatterplots in the left column of Fig. 1

reveals that these intermediate listeners tend to achieve

higher levels of d0 in each of the 2-, 4-, and 8-tasks than they

do in the 1-task. Specifically, in each of these three plots,

most of the points corresponding to these intermediate listen-

ers fall above the main diagonal. That these differences in

task difficulty are significant is confirmed by paired-samples

t-tests of the null hypothesis that the mean values of d0 for

the tasks being compared are equal; the p-values comparing

the 1-task to the 2-, 4-, and 8-tasks are all highly significant.

By contrast, none of the tests comparing the mean d0 values

between the 2-, 4-, and 8-tasks reach significance. We con-

clude that the 1-task is more difficult than the other three

tasks, which are roughly equal in difficulty.

A. The bilinear model results

The estimated values of Ft are shown in Fig. 2. Note

that F1-task is lower than all of F2-task, F4-task, and F8-task.

This is to be expected in light of Fig. 1 which shows that lis-

teners found the 1-task more challenging than the other three

tasks. Below we address the question of why this is.

The left panel of Fig. 3 shows the histogram of R levels

estimated for our 73 listeners. This histogram is very similar

to the histogram of R values observed by Dean and Chubb

(2017); once again, the histogram is positively skewed with

a large number of listeners with R values near 0 but does not

appear bimodal. However, when we plot the histogram of

proportion correct that our listeners would be predicted to

achieve in the 8-task (assuming they all used optimal crite-

ria), we obtain a bimodal distribution very similar to the dis-

tribution of performance observed in experiment 1 of Chubb

et al. (2013).

The bilinear model provides an excellent description of

the results. This is shown by Fig. 4 which plots the estimates

of d0k;t derived individually from the data for each listener k in

each task t against the values predicted by the bilinear model.

The bilinear model accounts for 84% of the variance in the

values of d0k;t for our 73 listeners across the 1-, 2-, 4-, and 8-

tasks, reflecting the strong relationship visible in Fig. 4.

It should be noted, however, that the bilinear model

does not account for all of the structure in the data. In the

Appendix, we use nested F-tests to compare the fit provided

by the bilinear model with fits provided by generalizations

of the bilinear model that allow d0k;t to depend on more than

one cognitive resource. The results reported there suggest

FIG. 1. Scatterplots of d0 achieved by

all listeners in each pair of tasks. d0

estimates are based on the last 50 trials

in each task. Associated with each

scatterplot are a t-statistic and the cor-

responding p-value derived from a

paired samples t-test of the null

hypothesis that the mean value of d0 is

equal for the two tasks. Note that the

1-task yields lower values of d0 than

the all of the other tasks.
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that performance is influenced slightly but significantly by

variations in a single cognitive resource in addition to R.

B. The effect of music training

Figure 5 plots the levels of R possessed by the listeners as

a function of their self-reported years of musical training. The

correlation of 0.50 is due mainly to the large number of listen-

ers with no musical training who have low levels of R. Of the

25 listeners k in our sample who had five or more years of

musical training, 13 had Rk< 1 (corresponding to an average

of <70% correct across all four tasks). Note in particular the

lone listener in our sample who had 18 years of musical expe-

rience had scale-sensitivity 0.32. A larger number of such lis-

teners were also reported by Chubb et al. (2013) and also by

Dean and Chubb (2017).

Strikingly, however, in both Dean and Chubb (2017)

and the current study, listeners with few years of musical

training invariably possess lower levels of R than do the

most sensitive listeners with five or more years of musical

training. Out of all of the 43 listeners, k, in the current sam-

ple with two or fewer years of musical training, none

achieved levels of Rk higher than around 2 (corresponding to

an average proportion correct around 86% across all four

tasks). By contrast, four of the 25 listeners with 5 or more

years of musical training had levels of Rk near 4 (correspond-

ing to near perfect performance across all four tasks).

IV. DISCUSSION OF THE PRESENT STUDY

The current study is focused on the following general

question: What is the nature of the skill that separates high-

from low-performers in the major-vs-minor tone-scramble clas-

sification task (Chubb et al., 2013) and other tone-scramble

tasks (Dean and Chubb, 2017)? All of the stimuli used in

Chubb et al. (2013) and Dean and Chubb (2017) were very

FIG. 2. Estimated values of Ft for the four tasks. As suggested by Fig. 1, F1-task

is lower than all of F2-task, F4-task, and F8-task, reflecting the fact that perfor-

mance in the 1-task is facilitated less strongly by the cognitive resource R than

are the other three tasks. Error bars are 95% Bayesian credible intervals.

FIG. 3. Left panel: Histogram of estimated R levels for all listeners. This histogram shows high skew, with a large number of listeners with R values near 0

and a long positive tail. Right panel: the histogram of predicted proportions correct in the 8-task corresponding to the R levels in the left panel. This histogram

appears bimodal even though the histogram of R levels does not.

FIG. 4. The description provided by the bilinear model. This scatterplot con-

tains a point for each listener k in each task t. The abscissa is the value of

d0k;t predicted by the bilinear model, and the ordinate is the corresponding

maximum likelihood estimate of d0k;t derived independently from the data

for listener k in task t. As indicated by the legend, points derived from dif-

ferent tasks t are plotted in different gray-scales.
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rapid tone-scrambles (presented at the same rate as the stimuli

in the 8-task of the current study). This raises the possibility

that the high-performing listeners differ from low-performing

listeners solely in being able to extract scale-generated qualities

from very rapid stimuli. If so, then many listeners who perform

poorly in the 8-task [identical to the major-vs-minor tone-

scramble classification task of Chubb et al. (2013)] might be

expected show improvement on the 4-, 2-, and perhaps espe-

cially the 1-task. As our results reveal, however, the major-vs-

minor tone-scramble classification task becomes no easier for

listeners if the stimuli are presented more slowly. In particular,

the 1-task—in which each note was presented for more than

half a second—proved to be the most difficult.

Moreover, performance across all of the 1-, 2-, 4-, and

8-tasks is well-described by the bilinear model of Eq. (1) sug-

gesting that performance in these four tasks depends predomi-

nantly on a single cognitive resource. Given that the 8-task

was one of the five tasks included in the study of Dean and

Chubb (2017), it is likely that the cognitive resource control-

ling performance in the 1-, 2-, 4-, and 8-tasks is identical to the

cognitive resource R that was found to control performance

across the five semitone tasks studied by Dean and Chubb

(2017). In ruling out the possibility that high-performers in the

8-task differ from low-performers merely in their ability to

extract scale-defined qualities from very rapid note sequences,

the current findings bolster the interpretation of R suggested by

the name “scale-sensitivity” introduced by Dean and Chubb

(2017), i.e., that R confers general sensitivity to the range of

qualities that music can achieve by being in a scale.

A final question remains from the current study: What

makes the 1-task more difficult than the 2-, 4-, and 8-tasks?

Section V explores this issue.

V. WHAT MAKES THE 1-TASK HARDER THAN THE
2-, 4- AND 8-TASKS?

A. Some notation

It will be convenient to indicate the notes G5, B[5, B5,

D6, and G6 by the integers 1, 4, 5, 8, and 13, reflecting their

locations in the chromatic scale starting at G5. We will refer

to these numbers as the “pitch-heights” of notes. We shall

also use the symbol “T” to refer to the “target” note (4 or 5)

in a given stimulus. Thus, if a stimulus S has T¼ 4, then S is

minor; if S has T¼ 5, then S is major. A “note-order” is a

permutation of the four symbols, “1”, “8”, “13,” and “T”; by

substituting “4” for T, we obtain a symbol string correspond-

ing in an obvious way to a minor stimulus; by substituting

“5” for T, we obtain a symbol string corresponding to a

major stimulus. Finally, for a given note-order Q, we will

write SþQ for the stimulus with note-order Q that has T¼ 5

and S�Q for the stimulus with note-order Q that has T¼ 4.

B. The order of the tones in a stimulus affects
responding

As revealed by Fig. 6, the results from the 1-task show

unanticipated structure. This figure presents results averaged

across all 100 trials performed by each of our 73 listeners.

For each stimulus S, Fig. 6 plots the proportion of all of the

trials on which S was presented that the response was

“major.” If the judgments of our listeners depended only on

whether S has T¼ 4 or T¼ 5, then across the 24 different

note-orders on the horizontal axis, each of the plots for S
with T¼ 5 and T¼ 4 would be flat. On the contrary, we see

dramatic and roughly parallel variations in the two curves

suggesting that, irrespective of whether the stimulus is major

or minor, the specific order of the notes in the sequence

exerts significant influence on the responses of our listeners.

C. Modeling note-order effects

Note that listeners k whose levels of Rk are very high are

likely to perform perfectly in the 1-task; because the

responses of such listeners depend only on whether T¼ 4 or

T¼ 5, they will necessarily be invariant with respect to the

FIG. 5. The relation between years of musical training and R.

FIG. 6. The proportion of “major” responses to all 48 task-1 stimuli S. The

plot pools the data across all 100 trials performed by all 73 listeners. The

gray markers show the proportion of “major” responses for major stimuli

(target note T¼ 5); the black markers show the proportion of “major”

responses for the corresponding minor stimuli (target note T¼ 4). The note-

order of a given stimulus S is shown (running downward) at the bottom of

the figure; 1 ¼ G5; 4 ¼ B[5; 5 ¼ B5; 8 ¼ D6; 13 ¼ G6. Error bars are 95%

confidence intervals for the mean proportion.
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order of the notes in the stimulus. Conversely, the responses

of any listeners whose level of Rk is insufficient to support

perfect performance may show dependencies on the order of

notes in the stimulus. It is difficult, however, to anticipate

the pattern of such dependencies. For this reason, both of the

models described below allow the strength of note-order

effects to vary freely as a function of Rk.

1. The general modeling framework

Both of the models we consider assume that on a trial in

which listener k is presented with stimulus S, the listener

computes a noisy internal statistic and compares it to a crite-

rion gk that is fixed across all trials performed in the 1-task

by listener k. If this internal statistic is larger than gk, the lis-

tener responds “major”; otherwise, the listener responds

“minor.” We use the symbol “Mk,S” to denote the expecta-

tion of this internal statistic, and we assume that the noise is

Gaussian with standard deviation 1. Formally,

Response of listener k to stimulus S

¼
}Major} if Mk;S þ X > gk;

}Minor} if Mk;S þ X < gk;

(
(3)

where X is a standard normal random variable.

The fullest model of the form expressed by Eq. (3)

allows Mk,S to be a free parameter for each listener k and

each task S. However, this model provides no traction in

understanding the effects revealed by Fig. 6. Instead, we

consider two nested models below, each of which is nested

within the fullest model.

The first model we consider is called the “descriptive”

model because its purpose is to describe with full freedom

the variations in the stimulus-specific biases present in the

data. Accordingly, the descriptive model includes free

parameters for all of these biases. The “pitch-height-biased”

model described below will attempt to capture with fewer

parameters the pattern of the biases revealed by the descrip-

tive model.

D. Fitting procedures

Below we describe two models, called the “descriptive

model,” and the “pitch-height-biased model.” To estimate

parameter values for each of these models, we use a

Bayesian fitting procedure. Specifically, we assume a jointly

uniform prior distribution with wide bounds on all model

parameters. We then use Markov chain Monte Carlo simula-

tion to extract a sample of vectors from the posterior joint

density characterizing the parameters. All of the error bars in

figures plotting parameter values give the 0.025 and 0.975

quantiles of the marginal density for the given parameter.

E. The descriptive model

For any stimulus S, let

sS ¼
1 if stimulus S has T ¼ 5;

�1 if stimulus S has T ¼ 4:

(
(4)

Thus, sS is the variable that the listener should be using to

make her judgment on each trial. However, Fig. 6 suggests

that different stimuli S inject stimulus-specific biases into

the judgments of many listeners k. For any stimulus S, we

write bS for the bias associated with S. We assume that the

influence on Mk,S both of sS and also of bS depends on Rk.

Specifically, the descriptive model assumes that

Mk;S ¼ fsðRkÞsS þ fbðRkÞbS; (5)

where the function fs(R) reflects the strength with which the

response of a listener with scale-sensitivity R is influenced

by sS (i.e., whether S has T¼ 4 or T¼ 5), and the function

fb(R) reflects the strength with which the response of a lis-

tener with scale-sensitivity R is influenced by the stimulus-

specific bias bS.

To limit the number of parameters contributed to the

model by fs(R) and fb(R), we force each of these functions to

assign a fixed value to all Rk in a given sextile of the distribu-

tion of scale-sensitivities observed across all listeners k in

the current study.

In order for the descriptive model [Eq. (5)] to be

uniquely specified, additional constraints need to be imposed

on the stimulus-specific biases bS. Specifically, we require

that

X
S

bS ¼ 0 and
1

48

X
S

b2
S ¼ 1; (6)

where each sum is over all 48 stimuli S. The first constraint

insures that the bS values cannot trade off with the threshold

values gk. The second constraint insures that the bS values

cannot trade off with fb. The specific form of this second

constraint on the bS values is chosen to make their magni-

tudes comparable to those of the sS values (which also sat-

isfy 1
48

RSs2
S ¼ 1).

The parameters of the descriptive model are the 48 bS

values, the six values of each of fs and fb and the 73 values

of gk. Therefore, taking into account the two degrees of free-

dom sacrificed by imposing the constraints of Eq. (6) on the

bS values, the model has 73þ 48þ 12� 2¼ 131 degrees of

freedom.

The main aim of this model is to derive estimates of the

stimulus-specific biases, bS, that are cleanly dissociated from

the powerful influences that we know are exerted by sS on

the responses of listeners high in scale-sensitivity. We natu-

rally expect fs(R) to increase strongly with R. We also know

that for very high values of R, fb(R) must tend to 0; however,

we have no strong a priori expectations concerning the form

of fs(R) for lower values of R.

F. Results from the descriptive model

The stimulus-specific biases bS for all 48 stimuli S are

shown in Fig. 7. Across the 24 note-orders on the horizontal

axis, the gray markers show the results for stimuli S with

T¼ 5, and the black markers show the results for S with

T¼ 4. The main thing to note is that there are dramatic dif-

ferences between the stimulus-specific biases for different
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stimuli, and these biases appear similar for major and minor

stimuli with the same note-order.

It is useful to replot the data in terms of the following

two statistics:

dQ ¼
bSþ

Q
� bS�

Q

2
(7)

and

lQ ¼
bSþ

Q
þ bS�

Q

2
: (8)

Thus dQ reflects sensitivity to the difference between target

notes 5 vs 4 in the context of note-order Q, and lQ reflects the

bias injected by note-order Q regardless of the target note.

The black disks in the left (right) panel of Fig. 8 plot lQ

(dQ) for all 24 note-orders. The gray triangles in the left

panel plot the fit provided by the nested “pitch-height-

biased” model described below. The fact that nearly all of

the credible intervals in the right panel contain 0 shows that

note-order exerts little or no influence on sensitivity to the

difference between target notes 5 vs 4. By contrast, as shown

by the black disks in the left panel, the note-order-specific

bias lQ depends strongly on Q.

The upper left panel of Fig. 10 plots the functions fs
(black) and fb (gray) in the 1-task. As expected, fs increases

with Rk. By contrast, fb remains flat (and significantly greater

than 0) across all 6 sextiles of the distribution of Rk (with a

50% drop-off for the last sextile). This implies that whatever

factors are operating to produce the note-order-specific

biases lQ are largely invariant with respect to Rk.

G. The pitch-height-biased model

Chubb et al. (2013) noted that mean pitch-height

exerted strong influence on performance in classifying major

vs minor tone-scrambles, especially on the performance of

low-performing listeners. In particular, tone-scrambles that

included more high tonics (G6’s) than low tonics (G5’s) were

more likely to be judged major. This finding suggests

that the variations in lQ (the black disks in the left panel of

Fig. 8) might have to do with the variations in pitch-height

across different notes in the stimulus.

The pitch-height-biased model expresses this intuition.

Writing S(t) for the pitch-height of the note in temporal loca-

tion t¼ 1, 2, 3, 4, we estimate the stimulus-specific bias bS

of a given stimulus S as follows:

bS ¼
X4

t¼1

wtðSðtÞ � 6:625Þ; (9)

where the wt’s are model parameters called “sequential

pitch-height weights,” and the constant 6.625 is the expected

pitch-height of the note occurring on any given trial at any

one of the four sequence locations in the 1-task. The four

sequential pitch-height weights actually use only two

degrees of freedom because, in order for the model to be

FIG. 7. The stimulus-specific biases bS for the 48 1-task stimuli S. The gray

markers show the stimulus-specific biases for stimuli S with T¼ 5; the black

markers show the stimulus-specific biases for stimuli S with T¼ 4. The

note-order of a given stimulus S is shown (running downward) at the bottom

of the figure. Error bars are 95% Bayesian credible intervals.

FIG. 8. The note-order-specific biases lQ (left panel) and note-order-specific sensitivities dQ (right panel) for the 24 note-orders Q. The note-orders on the hor-

izontal axis run downward. The black circles show the estimates derived from the descriptive model in which all stimulus-specific biases are free parameters.

The gray triangles show the predictions of the pitch-height-biased model. Error bars are 95% Bayesian credible intervals.

J. Acoust. Soc. Am. 144 (4), October 2018 Mednicoff et al. 2249



uniquely determined, the wt’s must (1) sum to 0 and (2) be

chosen so that the resulting bS’s satisfy the right side of Eq.

(6). The total number of degrees of freedom in the pitch-

height-biased model is 87: 2 degrees of freedom for the 48

bS parameters, 73 for the gk’s, and 6 for each of the functions

fJ and fb.

H. Results from the pitch-height-biased model: The
importance of ending on a high note

The data are captured very cleanly by the pitch-height-

biased model. This is shown by Fig. 8. The left (right) panel

of Fig. 8 plots the lQ (dQ) values given by the descriptive

model (black disks) along with the estimates given by the

pitch-height-biased model (gray triangles). The patterns are

strikingly similar even though the pitch-height-biased model

uses only two degrees of freedom to estimate all of the lQ

and dQ values of the descriptive model (48 parameters that

take 46 degrees of freedom).

The four pitch-height weights used in Eq. (9) to estimate

the bS values predicted by the pitch-height-biased model

(and consequently also the lQ and dQ values plotted by the

gray triangles in Fig. 8) are plotted in the upper left panel of

Fig. 9. This panel shows that the bias injected by a particular

note-order Q in the 1-task depends primarily on the pitch-

height of the last note (although the weights of the first three

notes also significantly influence mean bias). If the note-

order ends on a high note, then the bias will be toward a

“major” response.

I. Do the 2-, 4-, and 8-tasks also show the
ending-on-a-high-note effect?

Although the 2-, 4-, and 8-tasks include too many possi-

ble stimuli to allow us to fit the descriptive model in which

the influence of each note-order is reflected by a free

parameter, we can easily fit the pitch-height-biased model to

the data from each of these conditions. The resulting sequen-

tial pitch-height weights wt for the 2-, 4-, and 8-tasks are

shown in the upper right, lower left, and lower right panels

of Fig. 9. Each of these functions shows that ending on a

high note introduces a bias to respond “major.” The upper

right, lower left and lower right panels of Fig. 10 show the fs
and fb functions for these three tasks. The relative influence

of note-order is lower for the 2-, 4-, and 8-tasks than it is for

the 1-task. However, note-order exerts a significant influence

on the responses of all listeners k other than those with levels

of Rk in highest sextile (who perform nearly perfectly in

each of the 2-, 4-, and 8-tasks).

J. Discussion of the note-order effects

The note-order effects revealed by the analysis are unan-

ticipated. Note-order is entirely irrelevant to the task the lis-

teners are striving to perform; moreover, the trial-by-trial

feedback that listeners received throughout this experiment

might be expected to suppress effects of this sort.

Nonetheless, as our results make clear, a powerful bias to

respond “major” to stimuli that end on a high note is promi-

nent across the listeners tested in this study in all task

conditions.

The ending-on-a-high-note bias seems to be unrelated

to scale sensitivity. The flatness of the gray curve in the

upper left panel of Fig. 10 shows that this bias operates in

the 1-task with nearly equal effectiveness across all listen-

ers irrespective of their levels of scale-sensitivity. Similar

effects are seen in the other panels of Fig. 10, except that in

the 2-, 4-, and 8-tasks listeners k with Rk values in the high-

est sextile are largely immune to the ending-on-a-high-note

bias.

We speculate that our instructions to classify stimuli as

“HAPPY (major)” or “SAD (minor)” may have produced

the ending-on-a-high-note effects. Although the current

study sheds no light on exactly why ending on high (low)

note has the effect of making a tone-scramble sound

“HAPPY” (“SAD”), theories about the relationship between

music and speech may shed some light into this effect (Patel,

2005; Patel et al., 2006). In particular, when a speaker asks a

question, or is excited, elated, or happy, the intonation of the

voice is steered toward ending on a high pitch (Juslin and

Laukka, 2003; Swaminathan and Schellenberg, 2015; Curtis

and Bharucha, 2010). Thus, if music inherits some of its

emotional expressiveness from our sensitivity to speech var-

iations, then we might expect the ending-on-a-high-note

effect. Evidence supporting this idea is presented in Romano

(2002).

VI. GENERAL DISCUSSION

This study was designed to investigate the nature of the

cognitive resource R that separates high- from low-

performing listeners in the task of classifying major vs minor

tone-scrambles (Chubb et al., 2013; Dean and Chubb, 2017).

Dean and Chubb (2017) hypothesized that R confers general

sensitivity to variations in scale relative to a fixed tonic;

accordingly, they called R “scale-sensitivity.” However, all

FIG. 9. The pitch-height weights for all four tasks. The sequential pitch-

height weights wt, for all locations t in the stimulus in each of the four tasks.

These weights are used in the pitch-height-biased model [Eq. (9)] to esti-

mate the values bS for all 48 stimuli S, and consequently also the values lQ

and dQ for all note-orders Q. Error bars are 95% Bayesian credible intervals.
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of the tone-scrambles used in the experiments of Chubb

et al. (2013) and Dean and Chubb (2017) used very rapid

stimuli (32 tones in 2.08 s); this raises the possibility that

high-performing listeners differ from low-performing listen-

ers merely in being able to extract scale-generated qualities

from very rapid stimuli. If so, then the difference between

high- vs low-performing listeners should disappear if stimuli

are presented more slowly.

The current results decisively reject this possibility.

First, the results for the 8-task replicate those from previous

studies (Chubb et al., 2013; Dean and Chubb, 2017); i.e., the

8-task yielded a strongly bimodal distribution in perfor-

mance with � 70% of listeners performing near chance and

the remaining listeners performing near perfect. In addition,

the bilinear model [Eq. (1)] provides a good description of

the results for 73 listeners across all of the 1-, 2-, 4-, and 8-

tasks (accounting for 84% of the variance). As implied by

Eq. (1), the many listeners who performed poorly in the 8-

task possess levels of R near 0 and therefore (also as implied

by Eq. 1) performed poorly in all of the 1-, 2-, and 4-tasks as

well.

The main findings thus support the idea proposed by

Dean and Chubb (2017) that the resource R confers general

sensitivity to the qualities that music can achieve by varying

the scale in the presence of a fixed tonic. This confirms the

appropriateness of the term “scale-sensitivity” introduced by

Dean and Chubb (2017) to refer to R.

A. How should we think about scale-defined
qualities?: The analogy to color

The main purpose of this section is to clarify what we

take to be the central open questions concerning scale-

sensitivity. We will first describe a working hypothesis con-

cerning the nature of scale-sensitivity. We will then state the

main questions raised in light of this hypothesis. Finally, we

will discuss possible methods for addressing these questions.

The qualities of many auditory textures seem to be rep-

resented by additive summary statistics (McDermott and

Simoncelli, 2011; McDermott et al., 2013), i.e., by neural

processes that compute the average of some temporally local

statistic over an extended time window. Plausibly, this is the

case for the qualities that tone-scrambles can evoke.

Moreover, the fact that the performance of listeners with

high levels of scale-sensitivity is unperturbed by the random

sequencing of tone-scrambles suggests that the summary sta-

tistics corresponding to scale-defined qualities do not depend

on note-order but only on the proportions of different notes

in the stimulus—i.e., on the scale of the stimulus, where the

term “scale” refers to the histogram of notes in the stimulus.

These observations suggest that the way in which scale-

defined musical qualities are encoded by the auditory system

may be analogous to the way colors are encoded by the

visual system. Note in particular that just as the scale-

defined quality evoked by a tone-scramble is determined by

the proportions of different notes the tone-scramble contains

FIG. 10. The functions fs and fb in all four tasks. The values of Rk plotted on the horizontal axis are the mean values of the six sextiles of Rk observed across

the 73 listeners k tested. The black (gray) plot shows fs(Rk) [fb(Rk)]. Error bars are 95% Bayesian credible intervals.
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(i.e., by the scale of the tone-scramble), the color of a light

of some fixed quantal flux is similarly determined by the pro-

portions of different-wavelength quanta the light contains

(i.e., by the spectrum of the light).

The color of a light for photopic vision is determined by

three summary statistics: the activations produced by the light

in the L-, M-, and S-cone classes (i.e., the long-, medium-, and

short-wavelength sensitive cone classes). For example,

L–cone activation produced by light H

¼ KH

X
fLðkÞPHðkÞ; (10)

where the sum is over all wavelengths k that occur in the

light, KH is a constant that depends on the quantal flux of H,

PH(k) gives the proportion of quanta in H that have wave-

length k, and the function fL(k) gives the sensitivity of L-

cones to quanta of wavelength k.

If scale-defined qualities are analogous to colors, then

for some set of scale-sensitive neuron classes C1;C2;…;CN ,

the scale-defined quality evoked by a tone-scramble is deter-

mined by the activations that the tone-scramble produces in

these N neuron classes. For a given neuron class, Ci,

Time–averaged activation produced in Ci

by a tone–scramble S ¼ KS

X
fiðdÞPSðdÞ; (11)

where:

(1) the sum is over all scale-degrees d (relative to whichever

note has been established as the tonic) that occur in the

tone-scramble S,

(2) KS is a constant that depends on the rate of presentation

of the tones in S,

(3) PS(d) gives the proportion of tones in S that have scale-

degree d, and

(4) fi(d) gives the influence exerted on the activation of neu-

rons in class Ci by an instance of a tone with scale-

degree d.

Of course actual melodies differ from tone-scrambles in

that the notes they contain may vary in such ancillary qualities

as attack, timbre, duration, loudness and rhythmic context.

Plausibly, however, these complexities can be handled with a

simple modification of Eq. (11). Let S(t) be the scale degree

of the tth tone in tone-scramble S, and let NS be the total num-

ber of tones in S. Then we can rewrite Eq. (11) as follows:

Time–averaged activation produced in Ci

by a tone–scramble S ¼ 1

NS

XNS

t¼1

fi S tð Þð Þ: (12)

If we suppose that the ancillary features of a given note

in a melody M collectively operate only to modify the

weight exerted by that note in activating a given neuron class

Ci, then we can generalize Eq. (12) as follows:

Time–averaged activation produced in Ci by melody M

¼ 1

Total M–weight

XNM

t¼1

fi M tð Þð ÞWM tð Þ; (13)

where M(t) is the scale-degree of the tth note of M, NM is the

number of notes in M, and WM(t) is the weight (determined

by the ancillary features of the tth note of M) exerted by the

tth note in M, and

Total M–weight ¼
XNM

t¼1

WMðtÞ: (14)

In summary:

(1) If the auditory system represents scale-defined qualities

analogously to the way in which the visual system repre-

sents colors, then (for listeners with non-zero scale-sensitiv-

ity) the auditory system will contain neuron classes Ci,

i ¼ 1; 2;…;N, each of which confers sensitivity to a dif-

ferent dimension of scale-defined quality. Each of these

dimensions should be characterized by a sensitivity func-

tion fi(d) that reflects the influence exerted on the activation

of neurons in class Ci by tones of scale degree d (relative to

whichever note has been established as the tonic), and the

time-averaged activation produced in neuron class Ci by a

tone-scramble S and should be given by Eq. (12).

(2) Under the assumption that the ancillary qualities of a

note (e.g., its attack, timbre, loudness, and duration) in

an actual melody operate only to modify the weight that

the note exerts in activating neurons in class Ci, the

time-averaged activation produced by any melody M in

Ci should be given by Eq. (13).

This model may well prove to be false, in which case

future experiments are likely to reject it; however, from our

current vantage point, it provides a useful working hypothe-

sis. Under the tentative assumption that the model is true,

several important questions leap out:

• How many distinct neuron classes Ci exist in the auditory

systems of listeners with high scale-sensitivity?
• What do the different classes Ci sense? I.e., what are the

sensitivity functions fi(d) characterizing the different neu-

ron classes Ci?
• How do the different ancillary properties of a note (attack,

timbre, loudness, rhythmic context) operate to modify the

weight exerted by the note in Eq. (13)?

Various psychophysical methods can be used to attack

these questions. By testing the relative discriminability of a

sufficiently large number of tone-scrambles with different

note-histograms, it is possible to determine the space

spanned by the sensitivity functions fi, i ¼ 1; 2;…;N. The

dimensionality of this space is a lower bound on the number

of neuron classes Ci that are sensitive to scale-defined quali-

ties. [This was essentially the method used by Maxwell

(1855) to show that human color perception is 3-dimen-

sional.] It is more challenging to determine the actual sensi-

tivity functions fi characterizing individual classes Ci of

scale-sensitive neurons. A method for addressing this prob-

lem has recently been developed and applied in the domain

of visual perception to analyze the mechanisms sensitive to

spatially random mixtures of small squares varying in gray-

scale (Silva and Chubb, 2014; Victor et al., 2017).
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In order to investigate the influence of the ancillary

properties of a note on the weight it exerts in activating a

give scale-sensitive neuron class, Ci, it is first necessary to

construct tone-scrambles whose note-histogram “isolates”

the neuron class Ci. In order to construct such tone-

scrambles, one must first determine the sensitivity functions

fj characterizing all of the neuron classes Cj. Then one must

derive the component ~fi of fi that is orthogonal to the space

spanned by all of the other fj’s (e.g., by using Gram-Schmidt

orthogonalization). Then in the context of a task requiring

the participant to classify tone-scrambles whose histograms

differ by ~fi, one can vary the ancillary properties of the notes

in the stimulus to measure the influence that these changes

exert on performance.

B. Melodic contour and the ending-on-a-high-note
bias

The contour of a melody (the rising and falling pattern

of pitch in the melody) is an important aspect of melodic

structure and has long been a focus of research in music per-

ception [for reviews see Justice and Bharucha (2002); Quinn

(1999); Schmuckler (1999, 2016)]. In the current context, if

we define the pitch-height of a tone as 1, 4, 5, 8, or 13

depending on whether the tone is a G5, B[5, B5, D6, or G6,

then for n¼ 1, 2, 4, 8, the pitch contour of a stimulus in the

n-task is the vector S of length n whose tth entry is the pitch-

height of the tth tone in the stimulus. As revealed by the

analysis of the 1-task in Sec. V, the randomly varying pitch

contours of the stimuli in all of the 1-, 2-, 4-, and 8-tasks

exerted a strong influence on the judgments of most listeners.

This influence obeys a simple rule. For the n-task, there

exists a vector w ¼ ðw1;w2;…;wnÞ of pitch-height weights

that we can think of as a pitch-contour sensitivity profile that

is fixed across all listeners. Then the additive bias exerted on

the decision statistic used by any listener to make his or her

judgment is w•S (the inner product of the pitch-contour sen-

sitivity profile with the stimulus pitch-contour).

Strikingly, this effect operates as strongly in listeners

with low scale-sensitivity as it does in those with high scale-

sensitivity. This suggests that sensitivity to this feature of the

stimulus is independent of scale-sensitivity.

This observation raises the possibility that, in general,

sensitivity to melodic contour is independent of scale-

sensitivity. To investigate this issue, one would need to

devise new tasks to measure sensitivity to melodic contour.

For this purpose, one could use tone-scramble-like stimuli.

However, to assess sensitivity to melodic contour, one would

want to use the same note histogram across all trials while

varying the temporal order of the notes in the stimulus. For

example, one might use stimuli comprising random permuta-

tions of 13, 65 ms tones, one each of the 13 notes in the chro-

matic scale from G5 to G6. In a given task condition, the

listener would strive, on each trial, to judge (with feedback)

whether the pitch contour of the stimulus correlated posi-

tively vs negatively with a particular “target” contour that

was fixed across all trials in the condition. This target con-

tour might resemble the contours shown in Fig. 9 or it might

take a different form.

Contour-sensitivity tasks of this sort can be used to

probe the question of whether or not sensitivity to melodic

contour is independent of scale-sensitivity. A natural

approach is to measure performance in both the 8-task (to

gauge scale-sensitivity) and in a contour-sensitivity task

across a large sample of listeners. If the correlations between

performance in the two tasks are low, this would lend sup-

port to the claim that contour-sensitivity is independent of

scale-sensitivity.

If the experiment is expanded so that each listener is

tested on several scale-sensitivity tasks [e.g., several of the

tasks used by Dean and Chubb (2017)] as well as several

contour-sensitivity tasks using different target contours, then

the case for the independence of scale-sensitivity and

contour-sensitivity would be strengthened if it were found

that two distinct factors were required to account for perfor-

mance of all subjects across all tasks, one that accounts for

performance across the scale-sensitivity tasks and another

that accounts for performance across the contour-sensitivity

tasks.

C. Does musical training increase scale-sensitivity?

The current results echo those of Dean and Chubb

(2017) in suggesting that musical training may heighten

scale-sensitivity in some listeners but not in others (Fig. 5).

The claim that scale-sensitivity can be heightened in some

listeners is supported by the observation that the highest lev-

els of scale-sensitivity observed across the subjects we tested

were achieved only by listeners with at least 5 years of musi-

cal training. Our sample contained four such listeners with

levels of scale-sensitivity near (or above) 4, implying that

they achieved nearly perfect performance in all four tasks.

By contrast, across the 43 listeners in our sample with 2 or

fewer years of musical training, the highest levels of scale-

sensitivity were only slightly above 2 (corresponding to an

average percent correct around 86% across the four tasks).

On the other hand, the evidence supporting the claim that

musical training fails to heighten scale-sensitivity in other

listeners is supported by the observation that among our 25

listeners with 5 or more years of experience, 13 had levels of

scale-sensitivity less than 1 (corresponding to an average

percent correct less than 70% across all four tasks) including

one listener with 18 years of musical training who had scale-

sensitivity 0.36 (which corresponds to an average percent

correct of at most 57% across all four tasks).

The current results thus suggest the following picture:

some listeners possess the potential to attain high levels of

scale-sensitivity whereas others do not. Musical training can

heighten scale-sensitivity in listeners who possess this poten-

tial; however, no amount of musical training can heighten

scale-sensitivity in listeners who lack this potential.

D. The importance of measuring scale-sensitivity
in assessing the effects of musical training

Trained musicians have been shown to perform better

than non-musicians on a wide range of auditory tasks. For

example, musicians are better than non-musicians at discrim-

inating simple tones (Buss et al., 2014; Fujioka et al., 2004,
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2005; Micheyl et al., 2006) and complex melodic stimuli

(Pantev et al., 1998). They also perform better than non-

musicians in tasks requiring sound segregation (Parbery-

Clark et al., 2009), auditory attention (Strait et al., 2010),

speech-processing (Besson et al., 2011a,b; Marie et al.,
2010; Marie et al., 2011; Morrill et al., 2015; Parbery-Clark

et al., 2011) as well as executive control (Bialystok and

DePape, 2009; Zuk et al., 2014).

If it is found that musicians perform better than non-

musicians in a given task, it is tempting to leap to the conclu-

sion that musical training improves performance in the task;

however, another possibility is that the task in question

requires resources that are inherited or acquired through

early experience, and people who possess those resources

are more likely to become musicians than people who do

not. It has proven challenging to decide between these alter-

natives in many cases.

In any study investigating the relationship between

musical training and performance in some perceptual or cog-

nitive task, we propose that the scale-sensitivity of all listen-

ers should be measured as a matter of standard practice for

the following reasons:

(1) If performance in the target task is correlated positively

with musical training, this may be due to the fact that

task performance depends on scale-sensitivity.

(2) Although scale-sensitivity and years of musical training are

correlated, the two variables can be readily dissociated due

to the existence of listeners with little or no musical train-

ing but high scale-sensitivity and other listeners with many

years of musical training but very low scale-sensitivity.

(3) It is easy to measure a variable that reflects scale-sensi-

tivity by testing a listener in 100 trials of the 8-task and

estimating d0 from the last 50 trials.

(4) Only by including scale-sensitivity in one’s model can

one determine whether musical training accounts for any

additional variance in predicting task performance.
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APPENDIX

This appendix shows that the bilinear model does not

capture all of the structure in the current data. We use F-tests

to compare the fits provided by several nested models of the

following form:

d0k;t ¼
Xn

i¼1

Ri;kFi;t þmeasurement noise; (A1)

where Ri,k and Fi,t are real numbers, and n can be any of 1, 2,

or 3. (The case of n¼ 4 is equivalent to the unconstrained

model in which d0k;t is estimated separately for each listener k
in each task t.) For n¼ 1, Eq. (A1) is equivalent to the bilin-

ear model.

If we think of each of our listeners k as providing a four-

dimensional vector ~dk ¼ ðd0k;1; d0k;2; d0k;4; d0k;8Þ, then for a

given n, the model of Eq. (A1) proposes that the vectors ~dk

produced by our listeners reside (except for measurement

noise) in a subspace of dimension n.

We compare the fits provided by:

(1) The bilinear model with the model of Eq. (A1) with

n¼ 2; this test yields F(74, 142)¼ 1.93, p¼ 0.0004

implying that the vectors ~dk are not confined to a line.

(2) The model of Eq. (A1) with n¼ 2 to the model with

n¼ 3; this test yields F(72, 70)¼ 1.17, p¼ 0.25. This

test thus fails to reject the null hypothesis that that the

vectors ~dk are confined to a plane.

The number of free parameters in the bilinear model is

76¼ 73þ 3 [the number of listeners plus the number of tasks

minus 1 (because of Eq. (2))]. The number of free parameters

in the model of Eq. (A1) is 76þ 74¼ 150 for n¼ 2;

222¼ 76þ 74þ 72 for n¼ 3. For each of these models, the

number of degrees of freedom is equal to dftotal � free
parameters, where dftotal¼ 73� 4 (the number of listeners

times the number of tasks).

For a given comparison between a nested vs a fuller

model, we first derive the residual sums of squared devia-

tions RSSnested and RSSfuller of the model predictions from

unconstrained values of d0k;t (across all listeners k and all

semitone tasks t). Then under the null hypothesis that the

constrained model captures the true state of the world, the

random variable

Q ¼ RSSnested � RSSf ullerð Þ= dfnested � dff ullerð Þ
RSSf uller=dff uller

(A2)

has an F distribution with degrees of freedom dffuller �
dfnested in the numerator and dffuller in the denominator.
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